Von Neumann Architecture


The von Neumann architecture is a design model for a stored-program digital computer that uses a processing unit and a single separate storage structure to hold both instructions and data. It is named after the mathematician and early computer scientist John von Neumann. Such computers implement a universal Turing machine and have a sequential architecture.

A stored-program digital computer is one that keeps its programmed instructions, as well as its data, in read-write, random access memory (RAM). Stored-program computers were an advancement over the program-controlled computers of the 1940s, such as the Colossus and the ENIAC, which were programmed by setting switches and inserting patch leads to route data and to control signals between various functional units. In the vast majority of modern computers, the same memory is used for both data and program instructions.

The terms "von Neumann architecture" and "stored-program computer" are generally used interchangeably, and that usage is followed in this article. In contrast, the Harvard architecture stores a program in a modifiable form, but without using the same physical storage or format for general data.

History

The term “architecture” in computer literature can be traced to the work of Lyle R. Johnson and Frederick P. Brooks, Jr., members in 1959 of the Machine Organization department in IBM’s main research center. Johnson had occasion to write a proprietary research communication about Stretch, an IBM-developed supercomputer for Los Alamos Scientific Laboratory; in attempting to characterize his chosen level of detail for discussing the luxuriously embellished computer, he noted that his description of formats, instruction types, hardware parameters, and speed enhancements aimed at the level of “system architecture” – a term that seemed more useful than “machine organization.” Subsequently Brooks, one of the Stretch designers, started Chapter 2 of a book (Planning a Computer System: Project Stretch, ed. W. Buchholz, 1962) by writing, “Computer architecture, like other architecture, is the art of determining the needs of the user of a structure and then designing to meet those needs as effectively as possible within economic and technological constraints.” Brooks went on to play a major role in the development of the IBM System/360 line of computers, where “architecture” gained currency as a noun with the definition “what the user needs to know.” Later the computer world would employ the term in many less-explicit ways.

The first mention of the term architecture in the referred computer literature is in a 1964 article describing the IBM System/360.[3] The article defines architecture as the set of “attributes of a system as seen by the programmer, i.e., the conceptual structure and functional behavior, as distinct from the organization of the data flow and controls, the logical design, and the physical implementation.” In the definition, the programmer perspective of the computer’s functional behavior is key. The conceptual structure part of an architecture description makes the functional behavior comprehensible, and extrapolatable to a range of Use cases. Only later on did ‘internals’ such as “the way by which the CPU performs internally and accesses addresses in memory,” mentioned above, slip into the definition of computer architecture.

Computer Architecture

Computer architecture in computer engineering is the conceptual design and fundamental operational structure of a computer system. It is a blueprint and functional description of requirements and design implementations for the various parts of a computer, focusing largely on the way by which the central processing unit (CPU) performs internally and accesses addresses in memory.

It may also be defined as the science and art of selecting and interconnecting hardware components to create computers that meet functional, performance and cost goals.